Maciej1 napisał(a): Punkt E jest 100 metrów od obiektywu (krawędź wody, patrz wyżej). No to punkt F jest mniej więcej 200 metrów od obiektywu (jest dwa razy bliżej linii zbiegu, niż punkt E) => punkt G- 400 metrów => punkt H- 800 metrów => punkt I- powiedzmy ok. 2 km. I tak dalej.O dziwo, całkiem sensownie objaśniłeś perspektywę.
Jak Ty chcesz widzieć "stopniowe zacieranie się powierzchni morza" wskutek mgły jeżeli wszystko (na płaskiej powierzchni morza) co jest bliżej niż ok. 2 kilometry mieści się w odcinku EI i jeśli wszystko to co jest dalej mieści się w odcinku pomiędzy punktem I, a linią horyzontu ? No jak, powiedz jak ?
Pominąłeś tylko jedno - perspektywa nie ściska nic do zera. Gdybyś miał rację, do obserwacji zamglenia powierzchni morza wystarczyłby przyrząd optyczny typu Twój Nikon P900. Nie ma jednak takich obserwacji. Powierzchnia morza, przy widoczności większej niż kilka km, zawsze urywa się ostro.
Maciej1 napisał(a): To oczywiste, że pomiędzy żółtą linią, a widoczną granicą powierzchni morza musi być powierzchnia morza, gdyż inaczej należałoby uznać, że łódka fruwa w powietrzu. I jest powierzchnia morza.Niekoniecznie. Tzn. w pewnej części tej przestrzeni (między widoczną granicą powierzchni morza a osią odbicia) prawdopodobnie faktycznie jest powierzchnia morza, ale niekoniecznie w całej tej przestrzeni.
Tylko że to jest szczególny przypadek. Owszem, miraże mogą "obcinać" obraz. Ale miraże nie występują zawsze, a powierzchnia morza jest obcięta zawsze.
Z trochę innej beczki - przypomnę swój stary post: https://ateista.pl/showthread.php?tid=13...#pid707704
Zastanawiałem się w nim nad tym, czym są górki na pierwszym planie i jak się mają do terenu narysowanego na czerwono w symulacji. Cóż, udało mi się znaleźć odpowiedź

Otóż do tej pory zakładaliśmy, że zdjęcie zostało wykonane z tarasu widokowego na wieży na Pradziadzie (ok. 1565 m n.p.m.). Pomyślałem jednak - a jeśli nie? Jeśli zostało wykonane po prostu ze szczytu Pradziada (ok. 1493 m n.p.m.)? Wcześniej zakładaliśmy, że tak nie mogło być, bo Schneeberg byłby niewidoczny z tej wysokości. Ale co jeśli warunki atmosferyczne były wyjątkowo sprzyjające i gradient temperatury był mniejszy, niż zwykle?
Ano, oto symulacja z 1493 m z gradientem 0,2 stopnia na 100 m (przypominam, "standardowy" jest 0,65): https://gfycat.com/delightfulwebbedbullfrog
I symulacja w tych samych warunkach dla Ziemi płaskiej: https://gfycat.com/idioticsmartblackandtancoonhound
Przy okazji wpadłem na pomysł, jak ładnie zaprezentować porównanie w formie animacji. Stwierdziłem, że zrobię podobne porównanie jeszcze dla Nowej Zelandii:
- Ziemia kulista: https://gfycat.com/fragrantshockingbaboon
- Ziemia płaska: https://gfycat.com/clearcutfakebonobo
To jeszcze nie koniec. Wczoraj trafiłem na artykuł o Tatrach widocznych z Podkarpacia: http://rzeszow.eska.pl/poznaj-miasto/tak...cia/763597 i postanowiłem ten widok też zasymulować.
- Ziemia kulista: https://gfycat.com/unitedcandidguillemot
- Ziemia płaska: https://gfycat.com/decisiveforkedequine
Wnioski zostawiam do wyciągnięcia czytelnikom
![[Obrazek: style3,Fizyk.png]](http://www.sloganizer.net/en/style3,Fizyk.png)
"Tylko dwie rzeczy są nieskończone - Wszechświat i ludzka głupota. Co do Wszechświata nie jestem pewien" - Albert Einstein
